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The classical potential solution for the flow about a thin airfoil in either steady 
or oscillatory motion requires application of the condition, postulated by Kutta, 
that the fluid velocity be finite at the trailing edge of the airfoil. The Kutta 
condition derives from the argument that viscous stresses will not allow a flow 
to turn about a sharp edge. Analytic verification of the validity of this condition, 
of particular interest in the unsteady case, has not previously been obtained. 
The problem is treated here by utilizing the Oseen formulation for viscous flow. 
Thesolution thus obtained approaches small-perturbation potential flow at a large 
distance from the airfoil and retains a qualitatively correct representation of the 
rotational flow near the airfoil. By simply assuming that the resultant force on 
the airfoil is finite, it  is shown that the Kutta condition must apply in the limit 
of vanishing viscosity. 

The first-order corrections, for large Reynolds number, to the lift and moment 
on an oscillating airfoil are explicitly determined. The effect of the Oseen approxi- 
mation on the applicability of the numerical results remains to be established. 

1. Introduction 
The solution of the Navier-Stokes equations for large Reynolds number 

constitutes a singular perturbation of an inviscid flow, since in the limit of 
vanishing viscosity the derivatives of highest order are eliminated from the 
differential equations. This singular behaviour is particularly evident in the two- 
dimensional flow about a cylinder, where the potential solution admits an 
arbitrary value for the circulation about the cylinder. Classical airfoil theory is 
derived by removing the indeterminacy through application of the Kutta condi- 
tion, which specifies that the rear stagnation point be located at the trailing edge. 
The use of this condition is justified by arguing that viscous effects must prevent 
the flow from turning around the sharp trailing edge. Experimentally deter- 
mined flow patterns and loadings do confirm that the Kutta condition is valid, at 
least for steady flow. An analytic derivation of the Kutta condition has not been 
obtained up to now, however. That is, there has been no rigorous demonstration 
of the manner in which the potential flow derives from the solution to the 
complete Navier-Stokes equations in the limit as the viscosity vanishes. 
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Analytic determination of the Kutta condition is of more than just academic 
interest. Thin-airfoil theory has been notably successful in providing the aero- 
dynamic loading on an oscillating airfoil for the prediction of flutter instabilities. 
The theory has been found to be inadequate, however, in predicting bending- 
torsion flutter of hydrofoils. Specifically, calculations indicate that no flutter 
should occur for fluid density greater than a certain critical value, while flutter 
has been obtained experimentally for fluid densities considerably greater than 
critical (see for example Henry 1962 and Woolston & Castile 1951). Since the 
structural properties of flutter models may be obtained to a high degree of 
accuracy, it is generally accepted that the representation of the unsteady hydro- 
dynamic forces is responsible for the discrepancy. The validity of the Kutta 
condition for unsteady flow has therefore become open to question. 

This investigation is directed to verifying analytically the validity of the 
Kutta condition and to determining the magnitude of direct viscous effects in 
the flow about an oscillating thin airfoil. It is claimed that a meaningful formula- 
tion of the problem may be obtained from the Oseen approximation to the 
Navier-Stokes equations. This approximation was originally devised for the flow 
over an arbitrary body at low Reynolds number (see for example Lamb 1945, 
p. 609). 

Suppose that an airfoil is oscillating with small amplitude in a steady uniform 
stream. If it is then assumed that the disturbances caused by the airfoil are 
small throughout the flow and the Navier-Stokes equations are linearized 
accordingly, the resulting expressions are precisely the Oseen equations. Clearly, 
these equations must agree with the potential representation of thin-airfoil 
theory at some distance from the airfoil, where viscous effects are negligible. 
The correct momentum balance i s  also obtained from these equations at the 
surface of the airfoil, because the no-slip condition applies there. 

These are the same arguments that motivated the use of the original Oseen 
approximation. There is no need here, though, to restrict application to low 
Reynolds number. That is, the only substantial error caused by the Oseen 
approximation comes from its simplified representation of the boundary layer, 
where streamwise convection is exaggerated. The basic mechanisms of momen- 
tum transfer have been retained. The Oseen approximation provides a suitable 
means for verifying the validity of the Kutta condition, then, since that condition 
derives from the limit of vanishing viscosity, and it is only required in taking this 
limit that viscous effects be correctly represented in the qualitative sense. 

The Oseen approximation has been applied previously to the flow about a 
stationary flat plate in a uniform stream at large Reynolds number by Piercy & 
Winny (1933) and by Tamada & Miyagi (1962), the former for a plate aligned 
with the stream and the latter for the plate normal to the stream. Because of the 
symmetry, both papers necessarily dealt only with the drag problem. In the 
present application, consideration is given rather to the lifting problem, but the 
formulation used here, in terms of integral equations, directly parallels that used 
by these authors. 

The analysis presented below proceeds from the consistent assumption of 
small perturbations in the equations of motion, as discussed above, and in the 
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boundary conditions. The airfoil is then represented by an oscillating flat plate 
of infinite span. It is further assumed that the resultant force on the airfoil must 
be finite. The Kutta condition is then found to follow directly in the limit of 
vanishing viscosity. 

The first-order corrections to lift and moment are explicitly determined, and 
are found to be O(Re-*), Re denoting Reynolds number based on semichord, as 
would be expected from boundary-layer considerations. The applicability of 
these corrections is, of course, questionable, because the Oseen approximation 
provides a poor representation of the boundary layer. Their order of magnitude 
should be correct provided there is no extensive separation, however. Using 
these corrections, Crimi (1964) found only minor changes in the predicted flutter 
characteristics of a representative hydrofoil configuration. It appears, then, that 
the discrepancy between theory and experiment for flutter at high fluid density 
may not be attributed either to use of the Kutta condition or to direct viscous 
effects. 

It should be mentioned that Chu (1962) also derived the viscous corrections 
to lift and moment on an oscillating flat plate. The analysis incorporates the 
Oseen approximation, but both the spirit and the method of approach differ from 
those applied here. Chu assumes that the Kutta condition holds, and in addition 
neglects viscous dissipation of the wake. He finds the viscous corrections to be 
O(Re-l), in disagreement with the results below. The discrepancy appears to be 
mainly due to his use of an unsubstantiated assumption (see Crimi 1964). 

2. Preliminary analysis 

If U ,  b and b/U are chosen as units of speed, length and time, respectively, where 
U and b are characteristic to the flow, then the differential equations of plane, 

2.1. Introduction of the Oseen approximation 

viscous incompressible flow may be written in dimensionless form as 

where Uqz and Up., are components of fluid velocity in the directions of x and y, 
respectively, pU2p is the static pressure, p being fluid density, and Re is the 
Reynolds number Re = Ub/v 

with v denoting the kinematic viscosity. The operator D/Dt denotes the con- 
vective derivative with respect to time t and V2 is the Laplacian operator. 

The Oseen approximation is introduced as follows: let 

q, = 1+u ,  

q = v .  
1/ 
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It is then assumed that quantities of second order in u and/or v are negligible in 
comparison with u, v, or their derivatives. This approximation is not valid near 
a boundary where the no-slip condition is imposed, u being of order unity in such 
a region. However, the correct differential relations are still satisfied at a 
boundary, due to the absence of convective terms there. Substituting for qx and 
qu in equations (2 .1)  and making this approximation, then, it is found that 

V2Ur-22k: -+- = o ,  

VZV,-2k -+- = o , ,  (2 2) 

I au av 
- + - - 0 ,  
ax ay 

The solution of equations (2 .2)  is implemented by assuming that u and v are 
each a sum of two contributions, one deriving from a potential $(x, y ,  t )  and the 

1 = up + u,, 
v = vp+v,, 

other rotational. Thus, let 

where 

It then follows from equations (2 .2 )  that the non-dimensional pressure p is 
given by 

and u, and v, are solutions of 

J au, av, -+- = 0,  
ax ay 

where Re = 21%. 

2.2. Formulation of the problem 

Consider a flat plate of infinite span and chord length two (or 2b in dimensional 
co-ordinates) immersed in a viscous, incompressible, uniform flow of unit speed 
(or speed U in dimensional variables). Assume that the plate is oscillating in 
pitch about its mid-chord point with amplitude a,, and in a plunging mode with 
amplitude h,, at a dimensionless frequency o = Qb/U,  where R is the frequency 
of oscillation. The geometry may be represented as in figure 1. 

The effect of the plate on the flow must be diminished with distance, requiring 

lim u = 0,) that 

where 

limv = 0, 
r+m 

r = (x2+ y z p .  

(2 .7)  
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Further, since the flow is viscous, the fluid velocity relative to the plate should 
vanish on the plate. As will be shown, use of the Oseen equations requires that 
the no-slip condition be applied on the interval - 1 < x < 1 of the x-axis, rather 
than at y = - h - xa. Specifically, the boundary conditions for small amplitudes 
of oscillation are 

u(x ,  0 ,  t )  = - 1 1 ( 2 . 8 ~ )  

dh  
v(x,O,t) = ---a-x- 

at at 
da/ (-1 < x < 1). 

(2.8b) 

I 
FIGURE 1. Representation of the geometry. 

For harmonic motion, equation (2.8 b )  in complex notation becomes 

v(x,O,t) = -[[iwh,+(1+iwx)a,]eid ( - 1  < x < I). (2.8 e) 

The necessity for applying the no-slip condition at  y = 0 rather than at the 
instantaneous position of the plate may be seen as follows. Consider the flow 
resulting from a plunging motion h(t)  (the argument is exactly analogous for 
pitching motion). Let u,, ve and p ,  denote the solution of the exact non-linear 
equations, satisfying the exact boundary conditions, and let uo, vo and po denote 
the solution to the equations simplified by the Oseen approximation. We have, 
among other relations, that 

au, au, - 1 ape Due - aue Dt - at +(l+ue)-+ve- - -V% -- ax ay Re ax 
and ~ , ( ~ , - h , t ) = - l  (-1 < x <  1). 

But specifying that ue be constant on the plate is equivalent to 

It then follows that, on the plate, ue must satisfy 
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Next, consider the solution under the Oseen approximation. This solution 
satisfies 

Now, if the plate is regarded as in its mean position at y = 0, uo is restricted by 
equation ( 2 . 8 ~ ) .  Then, of course, 

@)y=o=(2) = o  ( - l < x < l ) ,  
y=o 

and it follows immediately that 

at the mean position of the plate. This agrees with the momentum relation 
satisfied by the exact solution. If, on the other hand, the boundary conditions 
were applied at y = - h, i.e. if 

then 

whence 

Thus, 

and uo would have to satisfy 

on the plate, so the correct differential relation would not be reproduced at  the 
plate. In  an exactly similar manner, i t  is found that the correct differential 
relation for vo a t  the plate is only obtained by satisfying the boundary conditions 
at y = 0. In  other words, application of the Oseen approximation amounts to 
considering all convective changes to be in the direction of x at the free-stream 
speed. Any convective changes resulting from the transverse motion of the plate 
must then be represented by changes in time at a fixed position. 

It should be noted, in regard to  the above discussion, that apparently the 
term iauo/ay is of higher order and may consistently be discarded from the 
expansion of uo about y = 0; the boundary condition could then be applied at 
y = 0 without resorting to such elaborate arguments. This term is not necessarily 
of higher order, however. For, if the Reynolds number is large, the term would be 
negligibly small in comparison with uo only if the amplitude of the motion is 
much less than the boundary-layer thickness. On the other hand, by satisfying 
the correct differential relations at the mean position of the plate, the no-slip 
boundary condition may be imposed there without restricting the amplitude of 
the motion relative to the boundary-layer thickness. 
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In  connexion with the boundary conditions, it will be necessary to provide 
a representation of the wake emanating from the trailing edge of the plate. By 
the usual arguments, the displacement of the wake from the x-axis can be 
neglected. However, the viscous dissipation of the wake should be retained. 
Hence, the wake will be regarded as a sheet of decaying vortices, each element 
of which is convected downstream at the free-stream speed along the x-axis. 

3. Derivation of the integral equations 
3.1. Representation of the plate 

Let subscripts (1) and (2) denote contributions to u and v of plate and wake 
singularity distributions, respectively. It may be verified that the following are 
solutions of equations (2.2) : 

ul(x, y , t )  = LI1 ~ ( 6 )  [ ( l -kek(s-nKl(kr)  ~ o s O - k e ~ ( ~ - ~ K , ( k r )  
2n -1 r I 

1 I 
1 -  

vl(x, y ,  t )  = - ~ ( 6 )  - k ek+8 K,(kr) sin 8dc 
2nJ-1 lr 

The variables r and 8 are polar co-ordinates with origin at x = 6, y = 0;  the 
angle 8 increases in a counter-clockwise direction and is zero for y = 0, x > 6. 
The functions KO and K ,  are Bessel functions of the second kind for imaginary 
argument, of order zero and one, respectively; p is the complex constant 
defined by B2 = k2 + 2 i ~ k ,  

where p is the square root having positive real part. KO and Kl are defined for 
complex argument as follows (see Gray, Mathews & MacRobert 1952): 

The terms in equations (3.1) containing Bessel functions are solutions of 
equations (2.6). The functions multiplying ~ ( 5 )  may be identified as representing 
a source-like flow, while those functions multiplying y(c) correspond to a vortical 
flow. Equations (3.1) generalize the solution for steady flow given by Tamada & 
Miyagi (1962). It may be verified that these expressions for u1 and v1 will be 
h i t e  throughout the plane, provided ~ ( x )  and y(x)  are themselves integrable. 
The latter requirement only implies that the forces on the plate must be fhite. 

3.2. Representation of the wake 
The elemental solution for the wake must, when viewed from stream-fixed 
co-ordinates, be that of a fixed, isolated vortex which decays in a. manner pre- 
scribed by the Oseen approximation. The solution sought may be found in Lamb 
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(1945, p. 592). Transforming to a plate-fixed co-ordinate system and forming 
a distribution of these singularities of semi-infinite extent, the induced velocities 
due to the wake are given by 

where r and 0 are as defined for equations (3.1). The integrands in equations (3.2) 
may be interpreted physically as the induced velocities due to a vortex, with 
strength upon release of ~ ( t ) ,  located at x = 5, y = 0. 

In  order to completely define the wake, it is necessary to obtain a relation 
between the strengths of the bound and shed vortices. The existence of such 
a relation can be argued on physical grounds. As the lift on the plate changes 
with time, the total circulation about the plate must change. But instantaneously 
the total circulation in the flow must be constant, since viscous dissipation 
requires a finite time interval to act. The total circulation is maintained by the 
shedding of a vortex into the wake whose strength is equal in magnitude and 
opposite in sign to the change in circulation about the plate. 

This relation may be obtained as follows. If circulation is defined to be positive 
in the sense of positive lift (i.e. clockwise), then the circulation rC about a closed 
circuit C is defined by 

where q is the fluid velocity and dl is the vector of differential-length directed 
tangent to C in the direction of integration. If it is then assumed that C is being 
convected with the fluid and that quadratic terms can be neglected, consistent 
with the Oseen approximation, it is found that the time rate of change of rc, 
necessarily convective, is given by 

rc=$ C q.ai, 

where qr is the rotational contribution to q. The details of the derivation of 
equation (3.3) are given by Crimi (1964). 

In  order to  apply equation (3.3) to the problem being treated here, consider 
the circuit C shown in figure 2. Suppose that C is allowed to convect with the 
fluid. The circulation about C may be computed, using the expressions for 
u = ul+u, and v = vl+v2 as given above. It is then found that in the limit 
R+oo (see Crimi 1964) 

where 

(3.4) 

with v, being the sum of the rotational contributions to v1 and v2 as specified by 



-1 

FIGURE 2. The circuit for relating the strengths of the bound and shed vortices. 

AY 

1 
It  

c 
X 

Equating the results of equations (3.4) and (3.5), the integrals on v, cancel to give 

~ ( t )  = -iwTeiml, (3 .6)  

where 

3.3. The integral equations for (+ and y 
With the strengths of the wake singularities prescribed in terms of those of the 
plate according to equation (3.6), the flow field is completely defined by the 
unknown source and vortex strengths ~ ( x )  and y(x).  Specifically, u = u1 + u2 
and v = v1 + v2 are given by 

U(Z, y , t )  = L/l (+(<) [(A-kek(x-oKl(kr) cos6-kek(s-oK0(kr) d t  
2n  -1 r 1 

38 Fluid Mech. 23 
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By setting y equal to zero in equation (3.7) and substituting the resulting 
expression for u(x, 0, t )  in equation (2.8a), the following integral equation for 
cr(z) is obtained: 

where 

-kek(*-6)Ko(kJx-EI) dE ( - 1  < 2 < 1); (3.9) I 
sgn[x-5) = 1  (x > E ) ;  
sgn (x-5)  = - 1 (x < 6). 

The approximate solutions to equation (3.9), both for k < 1 and for k $ 1, are 
derived by Piercy & Winny (1933). Since u(x) contributes only to the drag, the 
solution of equation (3.9) is not of immediate interest here and so will not be 
discussed. 

The integral equation for y(z) is obtained by setting y to zero in equation (3.8) 
and substituting for v(x, 0, t )  in equation (2 .8~) .  The result is 

(3.10) 

The solution of equation (3.10) provides the pressure, and hence the lift and 
moment, exerted on the plate. Specifically, from equation (2.5), i t  follows that 

Ap E P(Z, 0-, t )  -P(z,  O+, t )  

(3.11) 

Upon integration, the following expressions for lift L per unit span and moment 
M per unit span about mid-chord (positive to increase angle of attack) are 
obtained : 

(3.12) 

4. Analysis of the lifting problem-the Kutta condition 
In  the following analysis, the functional form of y(s) is first deduced. Then 

the orders of magnitude, for large Reynolds number, of the contributions of the 
various terms of y(z)  to the integral equation are obtained. It is then possible to 
determine the form of the solution in the limit of infinite Reynolds number and 
to compute a first correction to the inviscid solution for large but h i t e  Reynolds 
number. 
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4.1. Determination of the functional form of y(x)  
If both sides of equation (3.10) are differentiated with respect to x, the result 
is to change the character of the singular part of the integrand from logarithmic 
to algebraic. The singularity obtained by differentiation is of the form (x- &l, 

the integral being defined as the Cauchy principal value. Performing the differ- 
entiation, then, and subtracting out the singular part of the integrand, it is 
found that 

(4.1) 

where 

and 
iwa, i d  d f z ( 4  = - - exp[-iw(C-l)] 

The 9 preceding the integral signifies that the Cauchy principal value is to be 
taken. 

It should be observed that if y (x )  is assumed to have integrable singularities 
(i.e. that lift is finite), then fl(z) is bounded over the whole interval - 1 < x < 1. 
Further, provided that x < 1, it is permissible to interchange the order of 
integration and differentiation in the expression for f&). The resulting integral 
is bounded so, for x < 1, fz(x) is also bounded. 

However,f,(x) has a singularity at x = 1. The nature of the singularity may be 
determined by deriving an equivalent expression for the integral in question, 
whereupon the behaviour at x = 1 becomes evident. The details of the calculation 
are given by Crimi (1964). The result is that 

The general form of the solution to equation (3.10) may now be deduced. To 
do this, let 

Thus, equation (4.1) may be written 

where now fo(s) is bounded over the whole interval - 1 < x < 1. But 

Therefore, let y ( x )  = 9(x)-*iwF(l+x), 
38-2 
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= Fo(x) . (4.4) 

Clearly Fo(x) is bounded over all of - 1 < x < 1. It may be shown (see Mus- 
khelishvili 1953) that the general form of the solution to equation (4.4) is 

where cr and c, are constants, g(x) is bounded, and g( - 1) = g(1) = 0. It then 
follows immediately that y ( x )  must have the form 

Let 

l-x: 1 + x t  l + x  
y(4 = C l ( K )  +.(-) l - x  + g ( x ) - i o "  (+ 

4.2. Ordering of the integral equation for k 1 

+-PI1 i w f  (k!@'' = w,(x)+w,(x). (4.8) 
4n -1 x-6 

To determine the orders of magnitude of the various contributions to w,(x), define 

1 

w,,!x) = 9 f g(6) X ( x  - E )  G, 

w,,(4 = -Bj -1 (1+6)X(x-6)d6, 

" -1 

1 

so that (4.9) 

The procedure for obtaining the values of wrl, w,~, etc., for k 9 1, is lengthy but 
straightforward. For illustrative purposes, the order of magnitude of wTl(x) is 

w,(x) = cpr,(x) + ctw,,(x) + w,,(x) - +iwfw,Jx). 
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computed in Appendix 1. Further details of the computations 
Crimi (1964). It is found that, for x not near the end-points k 1, 

597 

are given by 

-1 
wrl(x) = 4( 1 + x) .J( 2nk) 

It is further found that all four contributions to w,(x) are of order k-f at x = - 1, 
and that wrl and wrg are of order k-9 In k at x = 1. It remains to discuss the orders 
of magnitude of wrr and wrt in the vicinity of x = 1. 

Now wV by itself is logarithmically infinite a t  x = 1. However, if the terms in 
equation (4.8) which have a coefficient ioF are grouped together, and collectively 
denoted by wo(x), 

then wo(x) is of order one for x < 1, the rotational part of the integral over the 
wake being exponentially small in this region. Further, it may be verified that 
wo( 1) is also of order one. For, even though each of the two integrals making up 
w,, is of order Ink in the vicinity of x = 1, when the integrals are combined the 
leading terms cancel. Therefore, the terms in equation (4.8) having a coefficient 
iwF collectively are of order one over the whole interval - 1 Q x Q 1. 

On the other hand, the square-root singularity has a marked effect on the 
value of wr,(x) near x = 1. Specifically, it  is found that 

w,(l) = 2(k/n)9+O(k-* lnk) .  

In  summary, then, the situation is as follows. If k 9 1, the rotational contribu- 
tions to the integral equation, equation (4.1), are a t  most O(k-*) in comparison 
with the potential contributions, provided x is less than one (the rotational 
contribution from the wake integral is exponentially small in this region). In  
the immediate vicinity of the trailing edge, x = 1, however, one of the rotational 
terms becomes important. While all other rotational contributions are negligible 
in comparison with their potential counterparts, wrl is of order k* with respect 
to the potential terms. This effect makes it possible to deduce the form of the 
solution for k -+ 03, as is shown below. 
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4.3. Derivation of the Kutta condition 

If the expression for w&) as given by equation (4.9) is substituted in equation 
(4.8), the terms multiplying i d  are combined and the resdting expression is 
rearranged, it is found that y(x)  is required to satisfy 

C~W,~(X)  = (1 + ~ W X )  "0 + iwho-w,(x) - w,,(z) 

- c,w,,(x) + &lJFwo(x) ( - 1 < x < 1). (4.10) 

Now for x not near unity, each of the rotational contributions is of order k-4, and 
so may be neglected in comparison with its counterpart in w,(x). Thus, equation 
(4.10) gives that 

0 = (1 + ~ W Z )  a, + iwho- w,(x) + ~ ~ O F W ~ ( X )  + O(k-8) ( - 1 6 x < 1). (4.11) 

Clearly, then, over all of the chord except near x = 1, y(x)  must approximately 
satisfy the integral equation for a potential flow. Therefore, the independent 
potential contributions to the downwash at the plate must be of order unity. It 
then follows directly that q - c,, g(x) and F are all at most of order unity with 
respect to k. 

Now consider the situation at the trailing edge. If x = 1 is substituted in 
equation (4.10), then 

Ctwrt(1) = (1 -ti@) "0 + ioho-w,( 1) -wrg( 1)- (q-ct) wr,(l) 

- ctw,,( 1) + *ioFw,( 1) 

or, rearranging slightly, y(x)  must be such that 

~ l [ w , . ~ ( 1 ) + ~ , ~ ( 1 ) ]  = (1+iw)olo+iwh,-w,( l ) - - ,~( l )  

- (c, - CJ wrl( 1) + giwFwo(1) 

is satisfied. All the terms on the right-hand side of the above relation are of order 
unity. Therefore, the left-hand side must be of order unity as well: 

But 

Thus, it must be that ct is at most of order k-8, and so 

where q, g and F are all of order one, and g( - 1) = g(1) = 0. Then, 

lim y(1) = - i d .  

From equation (3.1 l), it is therefore required that Ap( 1) = 0, which is the Kutta 
condition. 

k+w 

5. Calculation of the first correction to the inviscid solution 
The solution for inviscid flow, with the Kutta condition applied, has been 

obtained by a number of investigators in various forms (e.g. see von Karman & 



Airfoil theory derived from the Oseen equations 599 

Sears 1938). If yo denotes the value of y in the limit k-tm, then from equation 
(3.10) and the above analysis yo must satisfy 

where 

and 
This equation has the solution 

yo( 1) = - iwFo. 

where 
- 2n e-io [iwh, + (1 + giw) a,] ro = 

iw[Ko(iw) +K,(iw)] ' 

If Lo and Mo denote the lift and moment resulting from yo, it then follows from 
equations (3.12) and (3.13) that 

where C(w), known as the Theodorsen function, is given by 

C(w) = Kl(W 
KO@) +K1(iW) * 

To obtain the first correction to yo(") for k % 1, assume that y(z) is of the form 

1 

If this expression for y is substituted in equation (3.10) and terms of higher order 
than k-* are neglected, it is found that y,(x) must be the solution of 

(5.3) 
where yo(") is given by equation (5.1), and 

It is also found from ordering arguments that y,(x) must satisfy the Kutta 
condition, removing the indeterminacy in the solution of equation (5.3). 

Although equation (5.3) can in theory be inverted directly, the solution so 
obtained involves integrals which are not readily evaluated either analytically 
or numerically. A more practical method of solution is adopted in what follows. 
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First, a more tractable form for the right-hand side of equation (5.3) is obtained 
by rewriting yo(%) : 

ioF, ei* 1-x 
iwh,+a,-- 

27r 

Upon manipulation of the last term in the above expression and evaluation of 
certain of the resulting integrals, it is found that 

ioF, 1-x t 
y,(x) = 2 [ i d ,  + a, - - e i w  ~ , ( i w ) ]  (-) + 2iwao(1 - x2)a 

27r l+x 

With the term in yo(x) which is singular at the leading edge thus separated out, the 
approximate expressions for the rotational contributions to the downwash given 
in 54.2 may be utilized. It is then found, to the order of approximation being 
considered here, that 

where 

The functions Fl, F2, F, and F4 were obtained in the above form from w,,(x), etc., 
as given in $4.2, by an appropriate change of variable which removed the 
singularities in the integrands at the end-points of the interval of integration. 
Note that each of these functions as written above has a derivative which is 
logarithmically singular a t  x = 1, while the integral which their sum approxi- 
mates (i.e. the left-hand side of equation (5.4)) is actually finite at x = 1. How- 
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ever, it  is easily shown that the error introduced by approximating the integral 
with these functions over the whole chord is of higher order in k-*. 

Equation (5.3) may now be solved numerically as follows. Let nj(x)  denote 
the solution of 

where 

4 

j=l 
Then clearly Y l ( 4  = z AjYlj(X). (5.61 

Now the derivative of each of the functions Fl(x) through Er4(x) is well approxi- 
mated by a polynomial in x summed with a logarithmic term. Specifically, if Bi 

is defined by 1 dF.(x) 

then the functions Gi(z), 

( j  = 1327 3,4), B. = - 4 Jim ___ -3- 
3 In (1 - x) dx 

are not singular on [ - 1, I] and may properly be approximated by polynomials, 
using the method of least squares. If polynomials of degree N are used to 
approximate these functions, it follows that 

-)- = Gj(x) + Bj( 1 + x) In 
d F  .(x) 

dx 

where the ajK’s are the solution of the set of equations 

If the expression for dl$./dx given in equation (5.7) is then substituted into 
equation ( 5 4 ,  the resulting integral equation may be solved using standard 
techniques. 

The computation of the additions to unsteady lift and moment due to viscous 
effects was carried out with the aid of a high-speed digital computer for various 
values of w between zero and one. Owing to the large number of integrations 
required, accuracy was limited to three significant figures. The results of the 
computations give the following expressions for lift L and moment M :  
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where F and G are the real and imaginary parts, respectively, of C(w). The 
quantities la,, lad, etc., are tabulated in Appendix 2. 

6. Discussion of results 
The determination of viscous effects at large Reynolds number usually initiates 

with an inviscid solution, which defines the boundary-layer flow. The effect of 
the boundary layer on the inviscid flow itself may then be calculated. This 
approach is only valid if the inviscid solution is indeed the proper one, in the 
sense that i t  derives from a viscous flow in the limit of vanishing viscosity. It 
was demonstrated above, by means of the Oseen approximation, that the 
potential flow about an oscillating thin airfoil obtained by applying the Kutta 
condition does derive, in the limit, from a viscous flow. The only assumption 
made in the analysis, other than those necessary to construct the mathematical 
model, was that the total lift on the airfoil be finite. This assumption is certainly 
reasonable if consideration is limited to physically realizable flows. The use of 
the Oseen equations to represent the viscous flow requires further discussion, 
however. 

The introduction of the Oseen approximation may be regarded as the replace- 
ment of the local fluid velocity by the free-stream velocity in the computation 
of convective derivatives. Large errors are thus incurred when the local fluid 
velocity differs considerably either in magnitude or direction from the free- 
stream velocity. If the flow is not separated, the flow in the immediate vicinity 
of either the leading or trailing edge differs by the greatest amount from the 
free-stream flow. As was found in the analysis, though, these regions are very 
localized, and the errors introduced there are of higher order for large Reynolds 
number. If, on the other hand, extensive separation occurs, the entire region of 
separated flow must grossly violate the assumptions of the Oseen approximation. 
But then, of course, the Kutta condition has no significance anyway, because the 
associated potential flow satisfies the wrong boundary conditions. As long as 
separation is contined to the immediate vicinity of the trailing edge, the Oseen 
approximation should be adequate, even if the boundary-layer flow is turbulent. 
It is only necessary to regard the computed velocity as being a mean value and 
the viscosity as the effective eddy viscosity to retain the correspondence with 
the actual flow. The Kutta condition would then still be valid. 

Another situation should be mentioned in which the representation used here 
might be inadequate to describe the flow. Specifically, there could be an excita- 
tion of a boundary-layer instability due to the oscillatory motion of the airfoil. 
The possibility of such an interaction appears to be remote, though, since the 
characteristic frequency of the boundary layer is O( U/S), where 6 is boundary- 
layer thickness, while the frequencies of interest at which the airfoil oscillates are 
much lower, being O( U/b ) .  

The quantitative significance of the computed viscous corrections to  lift and 
moment is difficult to assess. Unsteady boundary-layer theory has not yet 
produced a theoretical solution which would be adequate for purposes of com- 
parison. Unless experimentally confirmed, then, the numerical results obtained 
must be regarded as mainly of qualitative interest. 
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The variation of the viscous corrections with Reynolds number, according to 
the inverse square root, is as would be expected, since the boundary layer dis- 
places the potential flow by an amount of that order. Variation with reduced 
frequency is seen to occur largely in the terms out of phase with pitching 
amplitude or plunging velocity. 

This work was partially supported by the Air Force Office of Scientific 
Research. 

Appendix 1. The ordering of w,~(x) for x2 c 1 
It is desired to obtain the approximate value, for k 9 1 and z sufficiently less 

than unity, of w&), where 

W r J 4  = ( & - p ( x - t ) d f .  

The computation is broken up into three parts, by dividing up the interval of 
integration, as follows: let 

so that 

The parameter M is some number, say ten, such that the asymptotic forms of 
K&) and K,(z) apply for x > N. Its exact value is not needed, and so will not 
be specified. 

On the interval - 1 < 6 < x - ( M / k ) ,  the asymptotic expansions for the Bessel 
functions may be substituted in .X(x - t), to give 

- e-id%-0 
.x(x-$-) = [ ( x - ~ ) - % + 2 i w ( x - - g ) - * ] + o ( k - + )  ( - 1  < 5 < 2 - ( M / k ) ) .  

4( 2nk)t 
Thus. 

Upon integration by parts, i t  is found that 

In  the evaluation of S2, [( 1 - [)/( 1 + c)]4 may be expanded in a Taylor series 
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Now 

and the asymptotic form of KO@) applies for IzI 2 M. Therefore, 

J ( 4  w exp [ - (1 + i o / k )  M ]  

Also, e-M is clearly negligible in comparison with e M .  It then follows that 

Now F3 may be discarded, being exponentially small : 

= O ( e - 2 M )  + O(e-2kk-4). 

Summing Fl and S2, then, the terms involving M cancel, to give 

Appendix 2. Corrections to unsteady lift and moment 
The tabulated quantities are defined in equations (5.8) and (5.9). 

w 

0 
0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.81 
0.82 
0.90 
1.00 

la7 I,, 1% 'hs 

1-73 0.0 1-73 0.0 

1.41 0.0758 1.41 0.0319 
1.37 0.356 1.37 0.266 
1.38 0.601 1.38 0.459 
1.40 0.825 1-41 0.629 
1.42 1-04 1.43 0.787 
1.45 1.25 1.45 0.941 
1-48 1.45 1.47 1-09 
1.51 1.66 1.49 1.24 
1.52 1.68 1.49 1.26 
1.52 1.70 1.49 1.27 
1.55 1-86 1-51 1.39 
1.59 2.06 1.53 1.54 

1.51 -0.0580 1.51 -0.0812 
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0 

0 
0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.81 
0.82 
0.90 
1.00 

mar 

0.545 
0.463 
0.439 
0.450 
0.481 
0.514 
0.548 
0.585 
0-624 
0.667 
0.67 1 
0.676 
0.713 
0.762 

0.0 
- 0.0796 
- 0.0913 
- 0.128 
- 0.189 
- 0.261 
- 0.338 
- 0.417 
- 0.498 
-0.579 
- 0.588 
- 0.596 
- 0.661 
- 0.744 

mh, 

0.545 
0.462 
0.438 
0-449 
0.472 
0.490 
0.504 
0-513 
0-519 
0.523 
0-524 
0.524 
0.525 
0.526 

m A i  

0.0 
- 0.0417 
- 0.0155 

0.0193 
0-0264 
0.0208 
0.00999 

- 0.00283 
- 0.0164 
- 0.0301 
- 0.0315 
- 0.0329 
- 0.0438 
- 0.0574 
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Addendum. On the boundary conditions, by S. F. SHEN 
In  the foregoing paper, the solution of the Oseen equations for the problem 

of an oscillating flat plate, in plunging and pitching motion, in an incompressible 
viscous uniform stream, is obtained in the high Reynolds-number limit. The 
equations of motion were expressed in co-ordinates fixed to the undisturbed 
stream, and the boundary conditions were specified in the same manner as in the 
classical inviscid theory, namely, along the slit representing the mean position of 
the moving plate. An argument was given for the choice of boundary conditions. 
In  this addendum, we wish to provide a more convincing justification for the 
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choice. It will be shown that the solution could be interpreted better in moving 
co-ordinates attached to the plate, not only for the case we considered, but also 
in the classical inviscid theory. 

Our premise is that the Oseen approximation as the linearized version of the 
Navier-Stokes equation for small perturbations would yield a useful description 
here, even though the tangential velocity perturbation at the wall clearly is not 
small, provided that the correct differential relation for momentum balance at 

’ t  
Y‘ 

f V ‘  

FIGURE 1 A. Fixed and moving co-ordinates. 

the wall is maintained. One may wish to dispute just how ‘useful’ such an 
approximation really is, but this question has already been discussed in the 
foregoing paper. 

On this basis, to construct the Oseen approximation for our problem, since 
the plate is in motion, it is most logical to start with moving co-ordinates fixed 
to  the plate itself. On figure 1 A, we use (x, y )  to  denote the set of Cartesian 
co-ordinates fixed with respect to the free-stream of constant velocity U in the 
x-direction; the mean position of the plate being defined by y = 0,  1x1 < 1. The 
origin for the moving co-ordinates (x’, y’) is at the mid-point of the plate, so that 
theinstantaneouspositionof the plate is defined by y’ = 0, Ix’I < 1. The oscillating 
motion of the plate includes a plunging mode h = hoeiWf for the mid-point, and 
a pitching mode a = aOeid around the mid-point, h, and a,, being complex 
amplitudes and understood to be O(E) ( E  < 1). 

The relation between the velocity components (u, v) in the ‘fixed’ co-ordinates 
and (u’, v’) in the ‘moving’ co-ordinates is then 

u-va = u’+y’a-ha, 

ua+v = v’-x‘aih, 
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where a ‘dot ’ denotes the time derivative. The relation between the accelerations 
may also be obtained, leading to the following equations of motion in the moving 
co-ordinates : , 

D’ i a  - up = - - -,p + vV‘2u’ - [2v’a + y’a - xtci2 - ha], 
Dt P ax 

a a 
-u’+-,vt = 0, 
ax‘ ay 

where primed quantities refer to the moving co-ordinates, i.e. 

and ti and 8 are the accelerations of a and h, respectively. 

boundary conditions at the plate, for 
The mathematical problem is to find a solution for equation (2A) with the 

y‘ = 0,  lx’l < 1, ut = vt = 0, 

and the condition at infinity, as 

r ’ E  ,/(x‘2+y12)-+c0, u+U,  v+O, 

which, by equation (1 A), becomes 

u = u’+yfU .} as r‘-+co, 
Ua = v‘-x’&+h 

after omitting ha as being O(e2).  
We next restrict equation (2  A) to a finite region r’ = R, say, where R - O( I). 

Then the terms x‘a2 and y’k2 are O ( E ~ ) ,  as, of course, is ha. At large Reynolds 
numbers, except in the immediate neighbourhood of the plate, all disturbances 
are accepted to be O(E) .  Thus we introduce U” and v” in the moving co-ordinates, 
as small perturbations from the uniform stream 

I un = u’-(U-y’U), 

v“ = v’-(Ua+z’&-h). 

Assuming u’ N O( U ) ,  vt N O( Us),  equation (2A) may be formally linearized to 
retain only terms of O(s) 

within the region r‘ = R N O( 1). Hence, the linearization, in moving co-ordinates 
and in a finite region, leads to a set of equations similar to the equations usually 
obtained in fixed co-ordinates (2, y ) .  
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The boundary conditions at the plate in terms of U” and v” are for 

y’ = 0, Ix’I < 1, u” = - U ,  v“ = I i -  Ua-x‘a. (6-4 

As already mentioned, we shall consider equation (5  A) a useful approximation 
if equation (2A) and equation (5A) agree on the plate. The exact equation 
requires that, on the plate, 

1 
D‘ ,, l a p  a2u” 
j j j u  = ---’+v---+o(€2), 

jjp” = ---,+v-- U&+O(s2), 

pax a912 

D’ 1 ap a2vf’ 

P aY aYf2 

after the right-hand sides are evaluated with equation (6A). But on the plate, 
again from equation (6 A), the left-hand sides are 

Hence equation (7 A) is equivalent to 

which are in fact satisfied by similarly applying equation (5A) to the plate. 
Hence, we conclude that equation (5 A) is the desired Oseen approximation in 
moving co-ordinates, in a finite region r’ = R - O(1). 

For the region beyond r‘ = R, let us revert to fixed co-ordinates (x,y), and 
introduce perturbations from the uniform flow 

G =  u-u, v”=v .  

Since, for T > R, u”, v“ N O(s) at most, surely the usual linearization is justified 

The equations of continuity in both the moving and fixed co-ordinates are, of 
course, also identical in appearance. 

Consequently, we now propose to describe the flow by two sets of equations, 
one for the near region using moving co-ordinates, and one for the far region 
using fixed co-ordinates. The complete solution requires: 

(i) a solution (u”,v”) of equation (5A) satisfying equation (6A) at the plate 
and decaying to O(E)  as r’ = R - O(l) ,  

(ii) a solution (u”, v“) of equation (8 A) matching the above (after being properly 
transformed by equation (1 A)) along the contour r‘ = R, and tending to zero 
as r+m. 
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The observation may be made that, since (u”,v”) and (Z,v“) satisfy the same 
differential equations (although in different co-ordinates), it  is sufficient to con- 
struct only a single solution (u”, v”) of equation (5A) satisfying equation (6A) 
and tending to zero as r’+co. Such a solution certainly meets the requirements 
of (i). In  addition, along the matching contour r’ = R it  could be used directly 
as the values of (C,v”) to provide the boundary condition of (ii), with the error 
O(e2),  which error is partly due to the transformation equation (1 A) and partly 
due to the distance, O(e), between the points (x’, y’) and (x, y )  along the matching 
contour. It follows that to an accuracy of O(B),  the very same solution (u“, v”) in 
(x’, y‘) co-ordinates actually may be used as that for (Z, v”) in (x, y) co-ordinates 
in the far region. 

In  other words, the problem solved in the foregoing paper might be regarded 
as a composite solution, representing the near field in moving co-ordinates and 
the far field in fixed co-ordinates. We may note, however, that, in the pure 
plunging oscillation, the entire solution could be interpreted in moving co- 
ordinates. The presence of the pitching motion CI. is the onlyreason that a matching 
along r’ = R has to be introduced, in order to render the perturbation equation 
in the form of equation (5A). 

In  the classical inviscid theory written in fixed co-ordinates, the usual justifi- 
cation for applying the boundary condition at  the mean position of the plate rests 
on the fact that the normal velocity component alone determines the solution. 
Since the normal velocity is continuous across the plate, the error in neglecting 
the plate displacement is O(e2).  However, this argument could not be carried 
over to the case where the tangential velocity component, discontinuous across 
the plate, is also needed for the solution, as in the presence of a boundary layer. 
Therefore, to achieve a unified point of view it seems preferable to interpret the 
inviscid theory also in terms of moving co-ordinates attached to the plate. The 
calculation of the pressure distribution along the plate, etc., naturally remains 
unchanged. 
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